News
Multi-qubit Entanglement in a Quantum Network
The Cleland and Schuster groups at the University of Chicago have demonstrated multi-bit entanglement in a Quantum Network.
News
Structural Chemo-Mechanics of Fibrous Networks
Shenoy group in the IRG led a study on the multiaxial behavior of collagen networks. When stretched, the network models exhibited drastic contractions transverse to the direction of loading (yellow arrows in the top left image). The networks exhibited an anomalous Poisson effect, with apparent Poisson’s ratios larger than 1. Experiments validated this result and showed increases of apparent Poisson’s ratio with decreasing collagen concentration (top right image).
News
Holiday Lecture 2020: A Materials Wonderland
PCCM celebrated its annual Holiday Lecture 2020: A Materials Wonderland: A Celebration of How Materials Science Make Our Holidays Fun with PCCM faculty, research members and others providing (virtual) materials science presentations. The audience helped with experiments and demonstrations from their homes. 426 families registered, some with multiple children (tuning from all over the world), resulting in ~1,000 attendees!
News
The Perpetual Fragility of Creeping Hillslopes
Soil is a highly disordered granular material. Slow soil deformation (creep) controls the shape of hills in the natural landscape, and is a precursor of catastrophic landsliding. Our work demonstrates a surprising observation: an apparently static sandpile, sitting on a table, is actually alive with motion. We study a 3D granular heap, confined by walls and prepared by pouring. Via Diffusive Wave Spectroscopy (DWS), we observe the existence of spatially-heterogeneous micro-deformations that decay in size and frequency as time progresses but persist up to 11 days after the preparation of the system; the heap relaxes. We find that this relaxation can be enhanced (overaged) or reversed (rejuvenated) by tuning the types of disturbances applied to system.
News
Fibrous Networks in Liver Fibrosis
Animal tissues are composed of cells attached to either the surface of a fibrous network called a basement membrane or embedded within a 3D extracellular or interstitial matrix. As the disease liver fibrosis progresses, the extracellular fibrous networks become denser and more aligned. These physical changes lead to different mechanical properties and structures to which cells are exquisitely sensitive. To better understand the pathological effects of these changes during fibrosis on cells, we have engineered material platforms that mimic the extracellular matrix in tissue health and disease. As an example, we have fabricated fibrous materials that have varied mechanical properties and fiber densities when mechanically loaded due to the chemical adhesion between fibers, similar to natural extracellular matrix (see Figure).
News
Self-Regulated Non-Reciprocal Motions in Liquid Crystal Elastomer Pillars
A team at the Harvard MRSEC led by Bertoldi and Aizenberg has developed an approach to achieve a diverse trajectories from a single-material system via self-regulation: when a photoresponsive liquid crystal elastomeric pillar with mesogen alignment is exposed to light, it ‘dances’ dynamically as light initiates a traveling order-to-disorder transition front that twists and bends via opto-chemo-mechanical feedback.
News
Spin-to-charge conversion in ferromagnet/ topological insulator bilayers at GHz and THz frequencies
Experimental studies combined with theoretical calculations of spin dynamics across a wide frequency range from ~10 GHz to several THz in a novel amorphous ferromagnet (FM)/3D topological insulator (TI) (FeGaB/BiSb) system that is scalable and provides a promising platform for spin-electronic devices.
News
EHRD: Research Immersion in Materials Science & Engineering (RIMSE) Summer Schools
The UCSD MRSEC RIMSE Summer Schools prepare trainees to engage in research, in MRSEC labs and within UCSD at large. The program streamlines high school students, undergraduate students (with a particular focus on transfer students), REU students, and incoming graduate students into research programs in the domains covered by the two IRGs.
News
Self-assembly of nanocrystals into strongly electronically coupled all-inorganic supercrystals
At the University of Chicago MRSEC, we have demonstrated the self-assembly of charged nanocrystals into strongly electronically coupled supercrystals, a feature previously not possible with traditional insulating organic surface ligands.
News
IRG2: Equitable COVID-19 Vaccines Through Materials Science
The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches.
Showing 891 to 900 of 2586